ASSIGNMENT #7

Please do not write your answers on a copy of this assignment, use blank paper. As with all assignments, there will conceptual and computational questions. For computational problems you may check your work using any tool you wish; however you must clearly explain each step that you make in your computation.

For this assignment I encourage you to work with others; however, you are expected to **submit your own work in your own words**. In addition to the true and false section being graded, I will grade one other problem; this will account for 10 points out of 25. The other 15 will be based on completion. If you would like feedback on a particular problem, please indicate it somehow. You must make an honest attempt on each problem for full points on the completion aspect of your grade.

- (1) Show carefully that each of the following spaces are vector spaces. That is check that each of the 10 conditions hold.
 - (a) Let $\text{Diff}(\mathbb{R})$ be the space of all differentiable functions on \mathbb{R} with addition as function addition and scalar multiplication as function scalar multiplication.
 - (b) Let $Int(\mathbb{R})$ be the space of all integrable functions on \mathbb{R} with addition as function addition and scalar multiplication as function scalar multiplication.
 - (c) Let $M_n(\mathbb{R})$ be the space of $n \times n$ matrices with entries in \mathbb{R} where addition is matrix addition and scalar multiplication is matrix scalar multiplication.
- (2) In class we discussed the notion of set-builder notation (page 75 in the notes). This problem will have you practice writing sets of things in set-builder notation; we will be using this often in this class, so it's important to become comfortable with it. Write a set-builder description for each of the sets of elements below.
 - (a) The set of all integers divisible by 3.
 - (b) The set of all polynomials in $\mathbb{R}[x]$ that have a zero at 1.
 - (c) The set of all continuous function $f : \mathbb{R} \to \mathbb{R}$ such that f(0) = 0.
 - (d) The set of points on the *y*-axis of the Cartesian *xy*-plane.
- (3) Answer the following questions. Justify your answers using the subspace criteria. I know there's a lot, but this will help you develop an intuition for determining if you have a subspace or not.
 - (a) Is $SL_n(\mathbb{R}) = \{M \in M_n(\mathbb{R}) \mid |\det(M)| = 1\}$ a subspace of $M_n(\mathbb{R})$?
 - (b) Is the set $\{f \in \mathbb{R}[x] \mid \deg(f) = 5\}$ a subspace of $\mathbb{R}[x]$?
 - (c) Is the set $\{f \in C(\mathbb{R}) \mid f \text{ is differentiable on } (1,2)\}$ a subspace of $C(\mathbb{R})$?
 - (d) Is the set $\{(v_1, v_2, 0) \mid v_1, v_2 \in R\}$ a subspace of \mathbb{R}^3 ?
 - (e) Is the set $\{(v_1, v_2, 0, 1) \mid v_1, v_2 \in R\}$ a subspace of \mathbb{R}^4 ?
 - (f) Let A be any $m \times n$ matrix. Is the solution set of $A\mathbf{x} = \mathbf{0}$ a subspace of \mathbb{R}^n ?

- (g) Let A be any $m \times n$ matrix. Is the image of the linear transformation $T_A : \mathbb{R}^n \to \mathbb{R}^m$ (recall T_A is multiplication by A on the left) a subspace of \mathbb{R}^m ?
- (h) Is the set of points inside and on the unit circle in \mathbb{R}^2 a subspace of \mathbb{R}^2 ? *Hint:* the set of points inside on the unit circle can be described as $H = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}$?
- (i) Is the set of all polynomials in $\mathbb{R}[x]$ that have 1 as a root a subspace fo $\mathbb{R}[x]$?
- (j) Is the set $W = \{ax^2 + 1 \in \mathbb{R}[x] \mid A \in \mathbb{R}\}\$ a subspace of \mathbb{R}^2 ? What about $V = \{ax^2 \in \mathbb{R}[x] \mid a \in \mathbb{R}\}$?
- (4) For each of sets of vectors below, determine if they form a basis for the vector space they live in. If the set does not form a basis, determine if the set is at linearly independent, or a spanning set, or neither.

(a) Determine if the set of vectors in
$$\mathbb{R}^3 \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\}$$
 form a basis for \mathbb{R}^3 .
(b) Determine if the set of vectors in $\mathbb{R}^3 \left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\5 \end{bmatrix}, \begin{bmatrix} 0\\2\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\5 \end{bmatrix} \right\}$ form a basis for \mathbb{R}^3

(c) Determine if the set of vectors $\{x^2 + 1, x_1, 2\}$ of $\mathbb{R}_{\leq 2}[x]$ form a basis for $\mathbb{R}_{\leq 2}[x]$. (5) Let $W = \operatorname{span}\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ and $V = \operatorname{span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$, where

$$\mathbf{w}_1 = \begin{bmatrix} 1\\2\\0\\-1 \end{bmatrix}, \mathbf{w}_2 = \begin{bmatrix} 0\\2\\-1\\1 \end{bmatrix} \mathbf{w}_3 = \begin{bmatrix} 3\\4\\1\\-4 \end{bmatrix}$$

and

$$\mathbf{v}_{1} = \begin{bmatrix} -2\\ -2\\ -1\\ 3 \end{bmatrix}, \mathbf{v}_{2} = \begin{bmatrix} 2\\ 3\\ 2\\ -6 \end{bmatrix} \mathbf{v}_{3} = \begin{bmatrix} -1\\ 4\\ 6\\ -2 \end{bmatrix}.$$

Find bases for W and V. *Hint*: you might consider determining linear dependence relations among $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ and for $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3$ and getting rid of vectors that are dependent on the others.

- (6) Answer the following true and false questions. No justification is needed.
 - (a) The set consisting of one nonzero vector of a vector space is linearly dependent.
 - (b) If a finite set of vectors $S = {\mathbf{v}_1, \dots, \mathbf{v}_k}$ span a vector space V, then some subset of S forms a basis for V.
 - (c) If $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ are linearly independent vectors in some vector space V, and $W = \text{span}\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$, then $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ is a basis for W
 - (d) A subset W of a vector space V is a subspace if and only if the zero vector of V is in W.
 - (e) \mathbb{R}^2 is not a subspace of \mathbb{R}^3 .